
## City of Annapolis Tidal Flood Mitigation

**Environmental Matters Committee Meeting** 

May 19, 2016





## Tidal Flood Mitigation Project – Looking Backward

# NOAA Technical Report "Sea Level Rise and Nuisance Flood Frequency Changes around the United States" reported:

- Annapolis saw the greatest increase in nuisance flooding during the last 50 years
- Nuisance flooding, in <u>average flood</u> <u>days per year</u>, increased by 925% in Annapolis, from an average of 3.8 to 39.3 per year.
- Of the top ten areas based on percentage increase, Annapolis had largest number of nuisance flood events, with Washington, DC a distant second at 29.7 floods per year.

NOAA Technical Report NOS CO-OPS 073

## Sea Level Rise and Nuisance Flood Frequency Changes around the United States



City Dock in Annapolis, Maryland. Photo Credit: Amy McGovern.

Silver Spring, Maryland

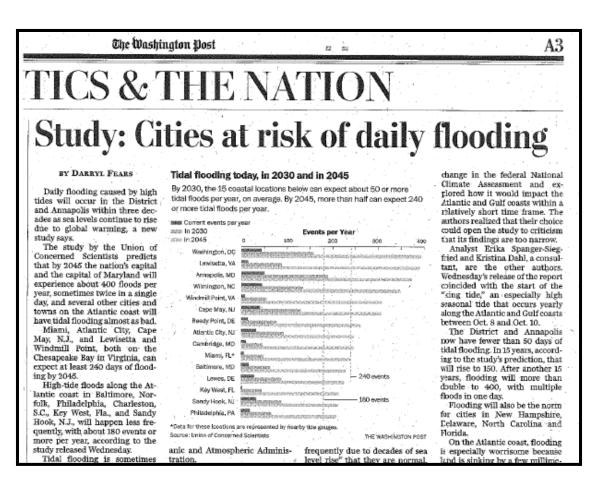
June 2014



noaa

National Oceanic and Atmospheric Administration

U.S. DEPARTMENT OF COMMERCE


National Ocean Service

Center for Operational Oceanographic Products and Services

## Tidal Flood Mitigation Project – Looking Forward

## "Encroaching Tides", a 2014 report from Union of Concerned Scientists, predicted:

- Annapolis will have nearly 200 annual flood events by 2030
- Annapolis will have over 350 annual flood events by 2040



## Flood Mitigation Project – Initial Concept

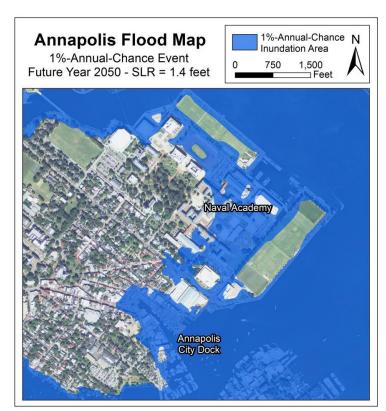
Concept was developed as part of the Annapolis Sea Level Rise Study completed in 2010.

### **Concept includes two phases:**

- Storm water system: Realignment of storm drains, installation of backflow preventers and storm water pumping station(s)
- 2. "Seawall": Benches and planters with infill structures






## Tidal Flood Mitigation Project – Funding Opportunities

## State Funding – approved by Legislature

- Engineering and Design \$1,000,000
- Focus on storm drain project

## FEMA HMA Subgrant Project Application – grant was not approved this year, will resubmit next year

- Engineering \$225,000
- Construction \$3,000,000
- Federal Share 75% with 25% match



## City Dock Flood Elevations

#### Elevation

MLLW (feet) NAVD 88 (feet)

| MLLW (feet) | NAVD 88 (feet) |                                                              |
|-------------|----------------|--------------------------------------------------------------|
| 7.83        | 7.11           | High water during Tropical Storm Isabel - Sept 2003          |
| 7.80        | 7.08           | 100 year base flood elevation for City Dock                  |
| 5.42        | 4.70           | Elevation of wall at new bulkhead                            |
| 4.92        | 4.20           | Elevation of Market House floor                              |
| 4.62-4.72   | 3.90-4.00      | Elevation of wall at old bulkhead being replaced             |
| 4.20        | 3.48           | City Dock boardwalk under water                              |
| 3.72        | 3.00           | Water flow out of Kunta Kinte Park - "over the top" flooding |
| 3.15        | 2.43           | Crest of Compromise Street - street flooded                  |
| 2.92        | 2.20           | Partial closure of Compromise Street                         |
| 2.62        | 1.90           | Water first reaches Compromise Street                        |
| 2.50        | 1.78           | Ponding in Dock Street parking areas                         |
| 2.40        | 1.68           | Water over dingy dock - Kunta Kinte Park flooded             |
| 1.50        | 0.78           | Water in storm drains                                        |
| 1.44        | 0.72           | Mean Higher High Water (MHHW)                                |
| 1.19        | 0.47           | Mean High Water (MHW)                                        |
| 0.72        | 0              | Mean Sea Level (MSL)                                         |
| 0.22        | -0.5           | Mean Low Water (MLW)                                         |
| 0           | -0.72          | Mean Lower Low Water (MLW)                                   |

#### **Annual High Water Levels**

| MLLW (feet) | NAVD 88 (feet) |                    |
|-------------|----------------|--------------------|
| 3.42        | 2.70           | High water in 2015 |
| 4.09        | 3.37           | High water in 2014 |
| 3.13        | 2.41           | High water in 2013 |
| 3.99        | 3.27           | High water in 2012 |
| 4.04        | 3.32           | High water in 2011 |
| 3.60        | 2.88           | High water in 2010 |
| 3 10        | 2.38           | High water in 2009 |

#### **Compromise Street Impacts**

|      | Times or | n road Times road | d close |
|------|----------|-------------------|---------|
| 2014 | 38       | 9                 |         |
| 2013 | 3 46     | 2                 |         |
| 2012 | 2 49     | 4                 |         |
| 2011 | 56       | 12                | )<br>-  |
| 2010 | 54       | 2                 |         |
| 2009 | 60       | 7                 |         |
|      |          |                   |         |

## **Comprehensive Flood Risk Management Study**

## - Conducted by US Army Corps of Engineers

## **Key Tasks**

## 1. Data Compilation and Review

- Compile and review existing studies, models, and data
- Review USNA plans

## 2. Identify Flood Risk and Needs

- Identify flood risk riverine, coastal, climate change/sea level rise, nuisance flooding and major storms
- Identify areas at risk and establish project goals and objectives
- Determine design level of protection

## Comprehensive Flood Risk Management Study Key Tasks (continued)

### 3. Develop and Evaluate Flood Mitigation Alternatives

- Identify structural (such as floodwall/sea wall, pumping station), nonstructural (flood proofing measures), permanent and temporary alternatives
- Coordinate to ensure any City plans are compatible with USNA plans
- Develop concept plans and costs for various alignments/projects/heights of protection
- Conduct economic analysis and determine benefits and costs of the various alternatives (benefits are the future reduction in damages)
- Evaluate and compare alternatives using various criterion

### 4. Public Involvement

 Hold public meetings to obtain input from residents/business owners/ stakeholders on flood risk and alternative plans

## Flood Mitigation Project – Next Steps

- 1. Receive approved State funding for storm drain mods
- 2. Work closely and in coordination with Naval Academy and U.S. Army Corps of Engineers (USACE)
- 3. Complete the USACE study
- 4. Conduct flood mitigation study in phases, as funding is available:
  - i. Historic District
  - ii. Eastport Community
  - iii. Other communities/areas within Annapolis
- 5. Initiate planning and design of storm drain modification project when initial phase of USACE study is completed